Для упрощения восприятия я привел решение разбив его на пункты 1,2 и 3.
Далее записываем тройной интеграл с определенными выше пределами и решаем его. Отмечу, что двойной интеграл частный случай тройного интеграла и находится внутри него когда мы решаем интеграл по dz.
Для начала нужно определиться с пределами интегрирования. А для этого построим проекцию тела на плоскость OXY:
— 8 месяцев назад
Спасибо за поддержку!
— 8 месяцев назад
Ну и зачем минусовать такой вопрос, не можете решить, никто и не заставляет, компенсирую минус - плюсом. Надо предложить этот вопрос ВасВас-у, он у нас математику любит, да и не он один.
— 8 месяцев назад
Вдруг кто нибудь решит блеснуть знаниями :)
— 8 месяцев назад
Если получите полный ответ от народа на эту задачу, смело требуйте от меня пару кредитов. Настолько уверен, что никто не возьмется решать.
z=2-x-y; z=0, y=x^2, y=корень из x
Изобразите данное тело и его проекцию на плоскость
2) тройного интеграла.
1) двойного интеграла;
Вычислите объем тела, ограниченного указанными поверхностями, с помощью:
Как вычислить объем тела при таких условиях?
Если вы у нас впервые:
Быстрая регистрация
Как вычислить объем тела при таких условиях?
Комментариев нет:
Отправить комментарий